DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4526B MSI

Programmable 4-bit binary down counter

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4526B is a synchronous programmable 4-bit binary down counter with an active HIGH and an active LOW clock input ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$), an asynchronous parallel load input (PL), four parallel inputs (P_{0} to P_{3}), a cascade feedback input (CF), four buffered parallel outputs (O_{0} to O_{3}), a terminal count output (TC) and an overriding asynchronous master reset input (MR).

This device is a programmable, cascadable down counter with a decoded TC output for divide-by-n applications. In single stage applications the TC output is connected to PL. CF allows cascade divide-by-n operation with no additional gates required.

Information on P_{0} to P_{3} is loaded into the counter while $P L$ is HIGH, independent of all other input conditions except MR, which must be LOW. When PL and $\overline{\mathrm{CP}}_{1}$ are LOW, the counter advances on a LOW to HIGH transition of CP_{0}. When PL is LOW and CP_{0} is HIGH, the counter advances on a HIGH to LOW transition of $\overline{\mathrm{CP}}_{1}$. TC is HIGH when the counter is in the zero state $\left(\mathrm{O}_{0}=\mathrm{O}_{1}=\mathrm{O}_{2}=\mathrm{O}_{3}=\right.$ LOW $)$ and CF is HIGH and PL is LOW. A HIGH on MR resets the counter (O_{0} to $\mathrm{O}_{3}=\mathrm{LOW}$) independent of other input conditions.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Fig. 2 Pinning diagram.

PINNING

PL	parallel load input
P_{0} to P_{3}	parallel inputs
CF	cascade feedback input
CP_{0}	clock input (LOW to HIGH, triggered)
$\overline{\mathrm{CP}}_{1}$	clock input (HIGH to LOW, triggered)
MR	asynchronous master reset input
TC	terminal count output
O_{0} to O_{3}	buffered parallel outputs

COUNTING MODE
CF = HIGH; PL = LOW; MR = LOW

COUNT	OUTPUTS			
	O_{3}	O_{2}	O_{1}	O_{0}
15	H	H	H	H
14	H	H	H	L
13	H	H	L	H
12	H	H	L	L
11	H	L	H	H
10	H	L	H	L
9	H	L	L	H
8	H	L	L	L
7	L	H	H	H
6	L	H	H	L
5	L	H	L	H
4	L	H	L	L
3	L	L	H	H
2	L	L	H	L
1	L	L	L	H
0	L	L	L	L

HEF4526BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4526BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4526BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

FUNCTION TABLE

MR	$\mathbf{P L}$	$\mathbf{C P}_{\mathbf{0}}$	$\overline{\mathbf{C P}}_{\mathbf{1}}$	MODE
H	X	X	X	reset (asynchronous)
L	H	X	X	preset (asynchronous)
L	L	Γ	H	no change
L	L	L	L	no change
L	L	L	X	no change
L	L	X	$\boldsymbol{\Gamma}$	no change
L	L	Γ	L	counter advances
L	L	H	L	counter advances

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\Gamma=$ positive-going transition
乙 = negative-going transition

SINGLE STAGE OPERATION

Divide-by-n; MR = LOW; CF $=\mathrm{HIGH} ; \overline{\mathrm{CP}}_{1}=\mathrm{LOW}$

PL	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{0}}$	DIVIDE BY	TC OUTPUT PULSE WIDTH
L	X	X	X	X	16	one clock period
TC	H	H	H	H	15	
TC	H	H	H	L	14	
TC	H	H	L	H	13	
TC	H	H	L	L	12	
TC	H	L	H	H	11	
TC	H	L	H	L	10	
TC	H	L	L	H	9	clock pulse
TC	H	L	L	L	8	HIGH
TC	L	H	H	H	7	
TC	L	H	H	L	6	
TC	L	H	L	H	5	
TC	L	H	L	L	4	
TC	L	L	H	H	3	
TC	L	L	H	L	2	
TC	L	L	L	H	1	
TC	L	L	L	L	no operation	

Fig. 3 State diagram.

Fig. 4 Logic diagram.
89て

Programmable 4-bit binary down counter

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Vynamic power	5	$1000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$4000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$10000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
		$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs	
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 150 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 300 \\ & 130 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} 123 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 54 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} \hline 150 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & \hline 300 \\ & 130 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} 123 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 54 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \mathrm{TC}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 210 \\ 90 \\ 70 \end{array}$	$\begin{aligned} & 420 \\ & 180 \\ & 140 \end{aligned}$	ns ns ns	$\begin{aligned} 183 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 79 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 62 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 210 \\ 90 \\ 70 \end{array}$	$\begin{aligned} & 420 \\ & 180 \\ & 140 \end{aligned}$	ns ns ns	$\begin{aligned} 183 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 79 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 62 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{PL} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 200 \\ 80 \\ 60 \end{array}$	$\begin{aligned} & \hline 400 \\ & 160 \\ & 120 \end{aligned}$	ns ns ns	$\begin{aligned} \hline 173 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 69 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 52 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tply	$\begin{array}{r} 180 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & 360 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} 153 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 59 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 140 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 280 \\ 110 \\ 80 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} \hline 113 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {HLL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} \hline 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$

Programmable 4-bit binary down counter

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.	
Minimum clock pulse width CP_{0} LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	ns ns ns	see also waveforms Figs 5 and 6
Minimum clock pulse width $\overline{\mathrm{CP}}_{1}$ HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twCPH	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	ns ns ns	
Minimum PL pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WPLH }}$	$\begin{array}{r} \hline 100 \\ 40 \\ 32 \end{array}$	$\begin{aligned} & 50 \\ & 20 \\ & 16 \end{aligned}$	ns ns ns	
Minimum MR pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twmR	$\begin{array}{r} 130 \\ 50 \\ 40 \end{array}$	$\begin{aligned} & 65 \\ & 25 \\ & 20 \end{aligned}$	ns ns ns	
Hold time $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{PL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{aligned} & 30 \\ & 20 \\ & 15 \end{aligned}$	5 5 5	ns ns ns	
Set-up time $P_{n} \rightarrow P L$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 30 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns ns ns	
Maximum clock pulse frequency PL = LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 6 \\ 12 \\ 16 \end{array}$	$\begin{aligned} & 12 \\ & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	see note 1

Note

1. In the divide-by-n mode (PL connected to TC), one has to observe the maximum HIGH to LOW propagation delay for CP to TC, before applying the next clock pulse.

Fig. 5 Waveforms showing minimum PL pulse width, propagation delays for $\mathrm{PL}, \mathrm{P}_{\mathrm{n}}$ to O_{n} and hold time for PL to P_{n}.

Fig. 6 Waveforms showing minimum CP_{0} and $\overline{\mathrm{CP}}_{1}$ pulse widths, propagation delays for $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$ to O_{n} and TC .

APPLICATION INFORMATION

Some examples of applications for the HEF4526B are:

- Divide-by-n counter
- Programmable frequency divider

Counting cycle:

L.S.D. counter M.S.D. counter

Fig. 8 Typical application of two HEF4526B circuits in a 2-stage programmable frequency divider. S are thumbwheel switches; when open: LOW state.

